Transverse Sphericity dependence of di-hadron angular correlations in pp collisions with ALICE

JUNIORS DAY

FILIP ERHARDT

Motivation

Starting from the near side Ridge (in p-p) as "the first surprising result from the LHC"

- It is only visible at high multiplicities
- High background from near side jet peak at low $\Delta \eta$ (ALICE is at a disadvantage)

Could we introduce a way to remove some of the background from jets? (sphericity)

 Possibly enhance the signal in general, and even at lower multiplicities (increasing statistics)

Di-hadron correlations

Correlation function $C(\Delta \eta, \Delta \phi)$

Trigger particle

$$C(\Delta \eta, \Delta \phi) = \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$$

$$S(\Delta\eta,\Delta\phi) = \frac{1}{N_{trig}} \frac{d^2 N^{same}}{d\Delta\eta \ d\Delta\phi}$$

Same event!

- Sum over all pairs in p_T range
- 2 particle correlation information
- Background from detector + single particle information

$$B(\Delta \eta, \Delta \varphi) = \frac{1}{N_{trig}} \frac{d^2 N^{mix}}{d\Delta \eta \, d\Delta \varphi}$$

Different events!

- 1 particle information
- Detector information
- No 2 particle correlation information

Di-hadron correlations

 $C(\Delta \eta, \Delta \varphi) = \frac{S(\Delta \eta, \Delta \varphi)}{B(\Delta \eta, \Delta \varphi)}$

Correlation function used here:

Only shape is relevant (multiply by factor to get associated yield)

Di-hadron correlations

 $C(\Delta \eta, \Delta \phi) =$

 $\frac{S(\Delta\eta,\Delta\phi)}{B(\Delta\eta,\Delta\phi)}$

Correlation function used here:

Only shape is relevant (multiply by factor to get associated yield)

Often main peak is truncated to more clearly show other features

Correlation function structures

Structures in the correlation function are caused by:

- Conservation laws
- Jets
- Bose-Einstein correlations
- Resonances
- Photon conversion
- Gluon strings
- Coulomb interactions
- Flow (elliptic..)
- Ridge

Idea: Selecting/isolating/enhancing certain structures could enable us to study that cause more thoroughly

Event Shape as a variable

On average, events dominated by certain processes responsible for structures in the correlation function should have noticeably different shapes.

Differentiating and isolating events by shape could lead to a purer data sample

Jets

• Inititally a hard process, particle production dominated by jet hadronization, large jet collimation contribution to particle correlations

Spherical events

• Multiple soft processes, non-perturbative QCD production, no collimation contributions to particle correlations and no pair k_T dependence

Transverse sphericity (ST)

• Scalar with values $S_T \in [0,1]$

JHEP 0408 (2004) 062 Eur.Phys.J. C72 (2012) 2124

Plan: Study the correlation function structures using transverse sphericity.

How correlated are ST and multiplicity? Does it make sense to use ST as a variable when we have mult? Do different definitions of "multiplicity" correlate differently?

Calculate correlation coefficient:

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{\left[n\sum x^2 - (\sum x)^2\right]\left[n\sum y^2 - (\sum y)^2\right]}}$$

 $0 \leq |r| \leq 1$ depending on how **linearly** correlated the 2 values are

Roughly:

- $0 \le |r| \le 0.3$ no or weak correlation
- $0.3 \le |r| \le 0.7$ moderate correlation
- $0.7 \le |r| \le 1$ strong correlation

Using total number of tracks in event and number of tracks All tracks from $|\eta| < 0.9$, $0.15 < p_t < 10 \frac{GeV}{c}$, charged and filterbits 5+6

Only tracks used in analysis(stricter cuts)

Using VOA and VOC detectors as multiplicity estimators? very similar so not needed!

- All correlations are similar
- Higher mult → (on average) higher St
- Opposite is not true
- Higher St ➡ high multiplicity
- Choosing high ST removes much less statistics than high multiplicity
- Possibly use a combination?

Stability of St with η

- Sphericity $(|\eta| < 0.9)$ Sphericity $(|\eta| < 0.5)$ correlation
- Very high correlation coefficient
- Low dependence of Sphericity on $|\eta|$ cut
- r = 1.00000 (up to accuracy of float)

Measurements

- LHC2010d data set
- 10 Runs 126403-126432
- Proton-proton collisions at 7*TeV*
- $33 \cdot 10^6$ events analysed
- $1 \ GeV/c < p_t < 3 \ GeV/c$ (all particles)
- $|\eta| < 0.8$
- Charged tracks
- Filter bits 5+6

Efficiency plots

generated and reconstructed MC for LHC10f6a, filter bits 5+6

Correlation function in different ST bins

15% of events with the highest and lowest transverse sphericities

- Strange ridges at $\phi = \frac{\pi}{2}, \frac{3\pi}{2}$?
- "you get what you ask for"
- Limited number of ways to get high sphericity with low multiplicity!

26 24 22 20 18 16 14 12 1.5 1 0.5 $\Delta \eta$ 0 3 -0.5 2 $\Delta \phi$ -1 0 -1.5 -1

 Highest sphericity bins must be accompanied by high multiplicity

Simulation

Simulation

Reduction of ridges at $\phi = \frac{\pi}{2}$, $\frac{3\pi}{2}$ with increasing multiplicity

Possibilities of detecting ridge? (d) N>110, 1.0GeV/c<p_<3.0GeV/c

• Cut the most extreme $|\Delta \eta|$ values and make a projection onto $\Delta \phi$

Mean

1.554

• $1.2 < \Delta \phi < 1.5$

Min bias correlation function

- All multiplicities and Sphericites!
- concave shape is observed at $\Delta \phi pprox 0$
- This is the expected shape which given by most simulations

Mid Sphericities

- Multiplicity > 10 and 0.63 < St < 0.795 give a ridge-like shape at $\Delta \phi pprox 0$
- Possibly a way of increasing statistics for observing/studying ridge?

Summary and future plans

- •Sphericity can be a powerful tool for cuts, different from multiplicity
- •Hints of the ridge at $\Delta \phi \approx 0$ for long $\Delta \eta$ range in mid St!

- •Plans:
 - Convert to per-trigger associated yield
 - Run on full set of 7TeV LHC2010d data and some 13 TeV data set (2015/2016)
 - Look at correlation function in all combinations of ST and mult bins
 - Look at projections on to $\Delta\eta$ and $\Delta\phi$ axes for all ST and mult bin combinations
 - Look at $\Delta \phi$ projections with main peak removed (use C_{ZYAM} subtraction)
 - Lowest $\Delta\eta$ cut out
 - Or fit function onto jet peak shape and removed that way
 - or ratio between events bins of different mult/ST
 - Compare everything with MC simulations

Backup

Preliminary measurements

- Proton-proton collisions at 13TeV
- $8 \cdot 10^6$ events analysed
- $1 \, GeV/c < p_t < 3 \, GeV/c$
- $|\eta| < 0.75$

St distribution further leans towards spherical

Sphericity cuts,13TeV proof of concept (coff func error?)

Long and short range correlations

Correlation of particles within a single jet

Short-range correlations Resonances, string or cluster fragmentation